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1 Dual Spaces and the Geometric Hahn-Banach Theorem

1.1 The dual space

Last time, we established the analytic version of the Hahn-Banach theorem. Given Banach
spaces B1, B2, let L(B1, B2) be the space of continuous linear maps T : B1 → B2. Then
L(B1, B2) is a Banach space when equipped with the norm

‖T‖ = sup
06=x∈B1

‖Tx‖B2

‖x‖B1

.

Remark 1.1. To get that L(B1, B2) is complete, we only need that B2 is complete.

Here is a special case of this construction.

Definition 1.1. Let B be a complex Banach space. The dual space B∗ = L(B,C) is the
space of linear continuous forms on B.

When x ∈ B and ξ ∈ B∗, write 〈x, ξ〉 := ξ(x) so that the form (x, ξ) 7→ 〈x, ξ〉 on B×B∗
is bilinear.

Example 1.1. Let B = L1(R). Then B∗ = L∞(R). We claim that there exists a con-
tinuous linear form on L∞(R) which is not of the form u 7→ 〈f, u〉 =

∫
fu dx. Indeed,

by the Hahn-Banach theorem, there exists a linear continuous form L on L∞(R) such
that L(u) = u(0) whenever u ∈ L∞(R) ∩ C(R). If we assume that for some f ∈ L1,
L(u) =

∫
fu dx for all u ∈ L∞, then in particular,

∫
fϕ dx = 0 for all continuous func-

tions of compact support with ϕ = 0 near 0. This implies that f = 0 a.e., which is a
contradiction.

Definition 1.2. The norm on B∗ is given by

‖ξ‖B∗ = sup
06=x∈B

| 〈x, ξ〉 |
‖x‖B

.
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Proposition 1.1. For all x ∈ B,

‖x‖B = sup
06=ξ∈B∗

| 〈x, ξ〉 |
‖ξ‖B∗

.

Proof. We have | 〈x, ξ〉 | ≤ ‖x‖‖ξ‖ by definition for all ξ ∈ B∗. So

sup
ξ 6=0

| 〈x, ξ〉 |
‖ξ‖

≤ ‖x‖.

On the other hand, let W = Cx ⊆ B, and let ξ0 : W → C be αx 7→ α‖x‖. We have
|ξ0(y)| = ‖y‖ for all y ∈W , so by Hahn-Banach, ξ0 extends to ξ̃ ∈ B∗ such that |ξ̃(y)| ≤ ‖y‖
for all y ∈ B and ξ̃(x) = ‖x‖. So ‖ξ̃‖ = 1, which gives us

‖x‖ =
|〈x, ξ̃〉|
‖ξ̃‖

≤ sup
ξ 6=0

|〈x, ξ̃〉|
‖ξ̃‖

.

Remark 1.2. This proposition implies that the natural map ϕ : B → B∗∗ given by
x 7→ (ξ 7→ 〈x, ξ〉) is an isometry. The range is closed but may be strictly smaller than B∗∗.

1.2 Geometric version of the Hahn-Banach theorem

Definition 1.3. Let V be a normed vector space over R. An affine hyperplane in V is
a set of the form H = f−1(α), where α ∈ R, f is linear, and f 6= 0.

Proposition 1.2. The affine hyperplane H = f−1(α) is closed if and only if f is contin-
uous.

Proof. It is clear that if f is continuous, then H is closed. Conversely, if H is closed,
let x0 ∈ Hc, which is open. We may assume that f(x0) < α. Let r > 0 be such that
B(x0, r) = {x ∈ V : ‖x− x0‖ < r} ∩H = ∅.

We claim that f(x) < α for all x ∈ B(x0, r). If f(x1) > α for some x1 ∈ B(x0, r), then
the line segment {tx0 + (1− t)x1 : 0 ≤ t ≤ 1} ⊆ B(x0, t), so f(tx0 + (1− t)x1) 6= α for all

t. If t = α−f(x0)
f(x1)−f(x0) ∈ (0, 1), we get a contradiction.

We get f(x0 + ry) < α for all y with ‖y‖ = 1. So f is bounded, and hence f is
continuous.

Definition 1.4. Let V be a normed vector space over R, and let A,B ⊆ V . We say that
the affine hyperplane H = f−1(α) separates A and B if we have f(x) ≤ α for all x ∈ A
and f(x) ≥ α for all x ∈ B.
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Theorem 1.1 (geometric Hahn-Banach). Let V be a normed vector space over R, and let
A,B ⊆ V be convex, disjoint, and nonempty. Assume also that A is open. Then there
exists a closed affine hyperplane separating A and B.

This is sometimes called the “seperation theorem.” We will prove this next time. Here
is the idea of the proof. Given an open convex set C ⊆ V , define the gauge of C as
p(x) = inf{t > 0 : x/t ∈ C}.
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