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1 Dual Spaces and the Geometric Hahn-Banach Theorem

1.1 The dual space

Last time, we established the analytic version of the Hahn-Banach theorem. Given Banach
spaces B1, Bg, let L(Bj, By) be the space of continuous linear maps 7' : By — Bg. Then
L(B1, Bs) is a Banach space when equipped with the norm
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Remark 1.1. To get that £(B1, Bs) is complete, we only need that By is complete.
Here is a special case of this construction.

Definition 1.1. Let B be a complex Banach space. The dual space B* = L(B,C) is the
space of linear continuous forms on B.

When x € B and £ € B, write (x,&) := £(x) so that the form (x,&) — (z,&) on B x B*
is bilinear.

Example 1.1. Let B = L'*(R). Then B* = L*®°(R). We claim that there exists a con-
tinuous linear form on L°°(R) which is not of the form u — (f,u) = [ fudz. Indeed,
by the Hahn-Banach theorem, there exists a linear continuous form L on L*°(R) such
that L(u) = u(0) whenever u € L®(R) N C(R). If we assume that for some f € L!,
L(u) = [ fudz for all w € L, then in particular, [ fodx = 0 for all continuous func-
tions of compact support with ¢ = 0 near 0. This implies that f = 0 a.e., which is a
contradiction.

Definition 1.2. The norm on B* is given by
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Proposition 1.1. For all x € B,
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Proof. We have | (z,£) | < ||z]|||£]| by definition for all £ € B*. So
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On the other hand, let W = Cx C B, and let {§ : W — C be az — «af|z|. We have
1€0(y)| = |lyl| for ally € W, so by Hahn-Banach, &y extends to £ € B* such that |£(y)| < ||y||
for all y € B and £(z) = ||z||. So ||€]| = 1, which gives us
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Remark 1.2. This proposition implies that the natural map ¢ : B — B*" given by
x> (&~ (x,&)) is an isometry. The range is closed but may be strictly smaller than B**.

1.2 Geometric version of the Hahn-Banach theorem

Definition 1.3. Let V' be a normed vector space over R. An affine hyperplane in V is
a set of the form H = f~!(a), where a € R, f is linear, and f # 0.

Proposition 1.2. The affine hyperplane H = f~'(a) is closed if and only if f is contin-
uous.

Proof. 1t is clear that if f is continuous, then H is closed. Conversely, if H is closed,
let zyp € H¢, which is open. We may assume that f(zg) < a. Let » > 0 be such that
B(zo,r)={z €V |z —xo|| <r}NH=2.

We claim that f(x) < « for all © € B(zo,r). If f(x1) > a for some z; € B(xo,r), then
the line segment {tzg + (1 —t)x1 : 0 <t < 1} C B(xo,t), so f(tzo + (1 —t)x1) # « for all
t. It = L(IO) € (0,1), we get a contradiction.

f(z1)—f(zo)
We get f(zo + ry) < a for all y with |ly|| = 1. So f is bounded, and hence f is
continuous. O

Definition 1.4. Let V be a normed vector space over R, and let A, B C V. We say that
the affine hyperplane H = f~!(a) separates A and B if we have f(z) < aforallz € A
and f(x) > « for all z € B.



Theorem 1.1 (geometric Hahn-Banach). Let V' be a normed vector space over R, and let
A, B CV be convex, disjoint, and nonempty. Assume also that A is open. Then there
exists a closed affine hyperplane separating A and B.

This is sometimes called the “seperation theorem.” We will prove this next time. Here
is the idea of the proof. Given an open convex set C' C V, define the gauge of C as
p(x) =inf{t >0:z/t € C}.
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